Making Sense of Analytical Data

After the inital excitement of the arrival of new material in the lab, curiosity had to be curbed and the main task of the day tackled. This task was to process and interpret anayltical data acquired last week during many days work on the SEM. I use many different analytical techniques to investigate the more important archaeometallurgical residues passing through the lab – and the analytical SEM is one of the most useful.

BSEM Roman smelting slag

Backscattered electron image of a tapped Roman iron smelting slag. The field of view is 2.5mm.


The backscattered electron images reveal compositional contrasts through their grey scale. In this image the dominant phase, appearing pale grey, is fayalite (an olivine mineral, approximately Fe2SiO4).

Across the centre of the image is a discontinuity, produced by the chilling of the surface of an individual lobe of slag as it flowed from the surface and cooled in the air.

The crystals are large, suggesting the slag cooled slowly, and the lobe margin is not marked by the development of much iron oxide, so this example probably cooled right in the mouth of the furnace.

As well as producing these images, the analytical SEM also permits chemical microanalyses from tiny spots or areas of the sample.

The second backscattered electron image shows a tiny detail of the first image, with the location of microanalyses.

Detail of Roman iron smelting slag

Detail of Roman tapped iron-smelting slag. Field of view is approximately 0.17mm.


The instrument provides the chemical analyses, but they then have to be recast as mineral formulae – and that was today’s task. With many hundreds to do that was a substantial task in front of the spreadsheet. Gradually a picture emerges of the overall composition of the slag and of its constituent minerals.In this instance, the slag proved to be typical of residues produced during the smelting of iron ores from the Forest of Dean. That is a useful result in itself, allowing one aspect of the economy of this Roman settlement to be understood. As other samples from the same site are interpreted further details will emerge – permitting reconstruction of the yield and efficiency of the furnace as well as aspects of the technology itself.

Spreadsheet of chemical data

Processing microanalytical data, to convert the microanalyses into mineral formulae.


Archaeometallurgical residues provide a very direct link back to a particular occasion in the past, when an artisan did a particular job in a particular way. The waste material provides key evidence for that moment in time. Although studying the waste, rather than the product, might seem perverse, there is often a richer set of evidence about hte nature of the process to be gleaned from the residues than from the artefact. Crucially, the residues also typically remain close to the site of the activity, whereas the products were dispersed after production and may not be able to be linked back to their point of origin.

Careful investigation of such archaeometallurgical residues may allow us to come as close as we ever could do to looking over the shoulder of the Roman smith at his work.

A Slightly Less Archaeological Day Than Usual

Last weekend my left knee decided to stop working. So I had the day off today.  This means doing work for the course I am undertaking alongside my full-time job.

I work as the archaeology officer for Southwark Council. Other than staff in the Heritage team who work in the Borough’s museum, I am the only archaeologist at the Council. I work within the Development Management department (we no longer control development, we manage it!). I advise planning officers on whether proposals comply with the requirements of the Borough’s archaeology policy, wider heritage policies and the relevant paragraphs of the National Planning Policy Framework. I issue briefs for archaeological work, check WSIs, monitor site work, check reports, make recommendations for the discharge of archaeological conditions and manage much of the digital data for the department. Along side the archaeological work I also undertake some conservation work where an archaeological input is necessary or valuable or if it is a GIS heavy project.

I work in a team with conservation officers, urban design officers and a tree officer. As part of my employer’s commitment to staff training I am currently undertaking a postgraduate diploma in Historic Environment Conservation at the Ironbridge Institute. This is part of the Institute of Antiquity and Archaeology at Birmingham that is currently threatened with closure. Ironbridge is an immensely valuable training organisation that provides recognised degrees and qualifications that are organised in a way whereby those in full-time work can easily undertake the qualification with a minimal level of interference with their full-time jobs.

I have nearly finished by essay on concrete conservation (far more interesting than it sounds) and would urge anyone reading this to visit this web page for more information on the potential closure If you wish to support the effort to preserve the IAA please sign the petition

Ancient concrete? Really?

Yes, really.  I first fell in love with old buildings in Pompeii, where I spent summers working as an excavator from 2002-2008. Every day it struck me that I was in a place that still looked and felt like a real city. To my mind, this was down to the fact that the buildings are still standing. After more than 2000 years. Someone did something very, very right when making those buildings and I want to know more.

For my D.Phil research, I have landed in an opportunity to study structures in Ostia, Italy, which is also a preserved city-sized site.  The structures I’m investigating are all brick and mortar masonry, with concrete filling up the center wall core. This is what Vitruvius called opus caementicium. To be honest, I’m most interested in the people who made it: the builders who developed this wonderful, magical material that is still performing successfully more than 2000 years after it was first installed. Where did they get their materials? Why were certain materials preferred over others? How were the materials processed and mixed together? How did builders’ choices affect the concrete and its performance? Were the same mix types used for both public and private structures? Why is this stuff still standing? These are the questions driving my research, and I am looking to answer them by investigating the material itself.

To give a quick overview, the mortar and concrete I am analyzing was made of lime, volcanic sand aggregate, and water. Sounds rather simple, however, the combination of materials they were using produced complex chemical reactions, known to modern concrete scientists as pozzolanic reactions, which resulted in a sophisticated, high quality material. My sample collection was collected from a series of structures in Ostia from the 2nd century CE, by which time – at least in Rome – concrete was well-developed and had been employed in large-scale Imperial building projects. My task now is to analyze the Ostian structures to determine how well-developed their concrete industry had become by that time. The benefit of a site like Ostia is that the ancient city is left largely in tact without modern development. This means that unlike in Rome, where centuries of modern development has destroyed all but the most protected monumental structures, it will be possible to evaluate the buildings within their original cultural context.

The analytical techniques employed for my research are borrowed from geology and concrete science, which makes this a truly interdisciplinary project. My samples are essentially synthetic composites of natural materials that can be investigated with traditional petrography. I’m using light microscopy of thin sections to identify and quantify the aggregate, to describe the cementitious matrix, and to identify any  obvious degradation features or alteration products. Today I’m working on point counting one of the samples, which is pretty straight forward. I move across the sample in 1 mm steps, and at each location I record what I see in the cross hairs of the eyepiece. Besides the obvious benefit of quantifying each of the different components, I’m also getting to the know the sample really well. As I go, I’m recording information about the state of degradation or alteration, the shape and fillings of any cracks or holes, particle size and shape, and any other details that may give me a clue about what the builders were doing when they made the concrete.

I am also using scanning electron microscopy (SEM) to collect high-resolution, high-magnification backscatter images of the samples. At this scale I can get a better look at the binder-aggregate interface to see how well-bonded these components are. It is also possible to see any microscopic cements that have formed in pores, cracks, and the vesicles of aggregate clasts that would otherwise not be visible. The SEM also detects the atomic weights of everything in the sample, which show up as differences in the greyscale colour of the image. It  also can calculate the chemical composition of the different components, so using a combination of chemical data and backscatter images, I can determine what types of cements have formed (strengthening) and how much leaching has occurred across the matrix (degradation). The ratio of calcium to silica is key in both cases.

X-ray diffraction is also on the menu, assuming I can find the funding to pay for it. This technique is incredibly useful for identifying the mineral assemblage in rocks and materials. In this case, I will use it to confirm the original petrographic identification of minerals in the aggregate and to find any other alteration minerals that could not be seen in thin section. The presence of certain minerals like gypsum or ettringite usually indicate alteration of the mortar itself, but minerals such as stratlingite and calcium-aluminum-silicate-hydrates suggest the mortar was rather well-formed in the first place.

So today, I’ll be giving an account of what it’s like for me in the lab. I realize that being stuck in the lab sounds like a death sentence to some people, but for me, it’s where the magic happens.